By Topic

Robust Lane Detection and Tracking in Challenging Scenarios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
ZuWhan Kim ; Univ. of California, Richmond

A lane-detection system is an important component of many intelligent transportation systems. We present a robust lane-detection-and-tracking algorithm to deal with challenging scenarios such as a lane curvature, worn lane markings, lane changes, and emerging, ending, merging, and splitting lanes. We first present a comparative study to find a good real-time lane-marking classifier. Once detection is done, the lane markings are grouped into lane-boundary hypotheses. We group left and right lane boundaries separately to effectively handle merging and splitting lanes. A fast and robust algorithm, based on random-sample consensus and particle filtering, is proposed to generate a large number of hypotheses in real time. The generated hypotheses are evaluated and grouped based on a probabilistic framework. The suggested framework effectively combines a likelihood-based object-recognition algorithm with a Markov-style process (tracking) and can also be applied to general-part-based object-tracking problems. An experimental result on local streets and highways shows that the suggested algorithm is very reliable.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:9 ,  Issue: 1 )