By Topic

Using Phoneme Segmentation in Conjunction with Missing Feature Approaches for Noise Robust Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mohammadi, A. ; Amirkabir Univ. of Technol., Tehran ; Almasganj, F. ; Taherkhani, A. ; Naderkhani, F.

Cluster-based reconstruction is a feature based method that shown promising results in improvement of speech recognition accuracy but in low SNR values and multiple clusters, classification of noisy vectors is badly degrade the recognition accuracy. Main idea of this paper is to take advantage of phonetic properties and phonetic clustering to overcome disadvantage of classification step. We proposed three different clustering strategies in order to solve clustering misclassification problem and improve speech recognition accuracy in presence of additive noise through Phoneme Segmentation in conjunction with Missing Feature approaches. Third method results show an average improvement of 14.4% in 0 dB and 8.35% in -10 dB in comparison with conventional cluster-based reconstruction.

Published in:

Signal Processing and Information Technology, 2007 IEEE International Symposium on

Date of Conference:

15-18 Dec. 2007