By Topic

Laser Noise Cancellation in Single-Cell CPT Clocks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We demonstrate a new technique for the suppression of noise associated with the laser source in atomic clocks based on coherent population trapping (CPT). The technique uses differential detection of the transmission of linearly and circularly polarized beams that propagate through different parts of a single rubidium vapor cell filled with a buffer gas mixture. The common-mode noise associated with the laser frequency and amplitude noise is suppressed by the differential detection of the two laser beams. The CPT signal, which is present only in the circularly polarized laser beam, is unaffected. The implementation of the technique requires only a change of the polarization of part of the laser beam and an additional photodiode. The technique is simple and applicable to CPT frequency references where a major source of noise is the laser, such as compact and chip-scale devices.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:57 ,  Issue: 7 )