By Topic

Mechanism Design for Single Leader Stackelberg Problems and Application to Procurement Auction Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Garg, D. ; IBM India Res. Lab., Bangalore ; Narahari, Y.

In this paper, we focus on mechanism design for single leader Stackelberg problems, which are a special case of hierarchical decision making problems in which a distinguished agent, known as the leader, makes the first move and this action is followed by the actions of the remaining agents, which are known as the followers. These problems are also known as single leader rest follower (SLRF) problems. There are many examples of such problems in the areas of electronic commerce, supply chain management, manufacturing systems, distributed computing, transportation networks, and multiagent systems. The game induced among the agents for these problems is a Bayesian Stackelberg game, which is more general than a Bayesian game. For this reason, classical mechanism design, which is based on Bayesian games, cannot be applied as is for solving SLRF mechanism design problems. In this paper, we extend classical mechanism design theory to the specific setting of SLRF problems. As a significant application of the theory developed, we explore two examples from the domain of electronic commerce-first-price and second-price electronic procurement auctions with reserve prices. Using an SLRF model for these auctions, we derive certain key results using the SLRF mechanism design framework developed in this paper. The theory developed has many promising applications in modeling and solving emerging game theoretic problems in engineering.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:5 ,  Issue: 3 )