By Topic

Experimentally Verified Optimal Serpentine Gait and Hyperredundancy of a Rigid-Link Snake Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mehta, V. ; Pennsylvania State Univ., University Park ; Brennan, S. ; Gandhi, F.

In this study, we examine, for a six-link snake robot, how an optimal gait might change as a function of the snake- surface interaction model and how the overall locomotion performance changes under nonoptimal conditions such as joint failure. Simulations are evaluated for three different types of friction models, and it is shown that the gait parameters for serpentine motion are very dependant on the frictional model if minimum power expenditure is desired for a given velocity. Experimental investigations then motivate a surface interaction model not commonly used in snake locomotion studies. Using this new model, simulation results are compared to experiments for nominal and nonnominal locomotion cases including actuator faults. It is shown that this model quite accurately predicts locomotion velocities and link profiles, but that the accuracy of these predictions degrades severely at speeds where actuator dynamics become significant.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 2 )