By Topic

Disassembly Path Planning for Complex Articulated Objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cortes, J. ; Univ. de Toulouse, Toulouse ; Jaillet, L. ; Simeon, T.

Sampling-based path planning algorithms are powerful tools for computing constrained disassembly motions. This paper presents a variant of the rapidly-exploring random tree (RRT) algorithm particularly devised for the disassembly of objects with articulated parts. Configuration parameters generally play two different roles in this type of problems: some of them are essential for the disassembly task, while others only need to move if they hinder the progress of the disassembly process. The proposed method is based on such a partition of the configuration parameters. Results show a remarkable performance improvement as compared to standard path planning techniques. The paper also shows practical applications of the presented algorithm in robotics and structural bioinformatics.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 2 )