By Topic

Genetic SVM Approach to Semisupervised Multitemporal Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghoggali, N. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento ; Melgani, F.

The updating of classification maps, as new image acquisitions are obtained, raises the problem of ground-truth information (training samples) updating. In this context, semisupervised multitemporal classification represents an interesting though still not well consolidated approach to tackle this issue. In this letter, we propose a novel methodological solution based on this approach. Its underlying idea is to update the ground-truth information through an automatic estimation process, which exploits archived ground-truth information as well as basic indications from the user about allowed/forbidden class transitions from an acquisition date to another. This updating problem is formulated by means of the support vector machine classification approach and a constrained multiobjective optimization genetic algorithm. Experimental results on a multitemporal data set consisting of two multisensor (Landsat-5 Thematic Mapper and European Remote Sensing satellite synthetic aperture radar) images are reported and discussed.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:5 ,  Issue: 2 )