By Topic

Relevance-Based Feature Extraction for Hyperspectral Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mendenhall, Michael J. ; Air Force Inst. of Technol., Wright-Patterson AFB ; Merenyi, E.

Hyperspectral imagery affords researchers all discriminating details needed for fine delineation of many material classes. This delineation is essential for scientific research ranging from geologic to environmental impact studies. In a data mining scenario, one cannot blindly discard information because it can destroy discovery potential. In a supervised classification scenario, however, the preselection of classes presents one with an opportunity to extract a reduced set of meaningful features without degrading classification performance. Given the complex correlations found in hyperspectral data and the potentially large number of classes, meaningful feature extraction is a difficult task. We turn to the recent neural paradigm of generalized relevance learning vector quantization (GRLVQ) [B. Hammer and T. Villmann, Neural Networks, vol. 15, pp. 1059-1068, 2002], which is based on, and substantially extends, learning vector quantization (LVQ) [T. Kohonen, Self-Organizing Maps, Berlin, Germany: Springer-Verlag, 2001] by learning relevant input dimensions while incorporating classification accuracy in the cost function. By addressing deficiencies in GRLVQ, we produce an improved version, GRLVQI, which is an effective analysis tool for high-dimensional data such as remotely sensed hyperspectral data. With an independent classifier, we show that the spectral features deemed relevant by our improved GRLVQI result in a better classification for a predefined set of surface materials than using all available spectral channels.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 4 )