Cart (Loading....) | Create Account
Close category search window

Uncertainty optimization for robust dynamic optical flow estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Willert, V. ; HRI Eur. GmbH, Offenbach ; Toussaint, M. ; Eggert, J. ; Korner, E.

We develop an optical flow estimation framework that focuses on motion estimation over time formulated in a dynamic Bayesian network. It realizes a spatiotemporal integration of motion information using a dynamic and robust prior that incorporates spatial and temporal coherence constraints on the flow field. The main contribution is the embedding of these particular assumptions on optical flow evolution into the Bayesian propagation approach that leads to a computationally feasible two-filter inference method and is applicable for on and offline parameter optimization. We analyse the possibility to optimize imposed Student's t-distributed model uncertainties, which are the camera noise and the transition noise. Experiments with synthetic sequences illustrate how the probabilistic framework improves the optical flow estimation because it allows for noisy data, motion ambiguities and motion discontinuities.

Published in:

Machine Learning and Applications, 2007. ICMLA 2007. Sixth International Conference on

Date of Conference:

13-15 Dec. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.