By Topic

A music recommendation system with a dynamic k-means clustering algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A large number of people download music files easily from Web sites. But rare music sites provide personalized services. So, we suggest a method for personalized services. We extract the properties of music from music's sound wave. We use STFT (shortest time fourier form) to analyze music's property. And we infer users' preferences from users' music list. To analyze users' preferences we propose a dynamic K-means clustering algorithm. The dynamic K-means clustering algorithm clusters the pieces in the music list dynamically adapting the number of clusters. We recommend pieces of music based on the clusters. The previous recommendation systems analyze a user's preference by simply averaging the properties of music in the user's list. So those cannot recommend correctly if a user prefers several genres of music. By using our K-means clustering algorithm, we can recommend pieces of music which are close to user's preference even though he likes several genres. We perform experiments with one hundred pieces of music. In this paper we present and evaluate algorithms to recommend music.

Published in:

Machine Learning and Applications, 2007. ICMLA 2007. Sixth International Conference on

Date of Conference:

13-15 Dec. 2007