By Topic

Sparsity regularization path for semi-supervised SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gilles Gasso ; INSA Rouen, Saint-Etienne du Rouvray ; Karina Zapien ; Stephane Canu

Using unlabeled data to unravel the structure of the data to leverage the learning process is the goal of semi supervised learning. A common way to represent this underlying structure is to use graphs. Flexibility of the maximum margin kernel framework allows to model graph smoothness and to build kernel machine for semi supervised learning such as Laplacian SVM [1]. But a common complaint of the practitioner is the long running time of these kernel algorithms for classification of new points. We provide an efficient way of alleviating this problem by using a LI penalization term and a regularization path algorithm to efficiently compute the solution. Empirical evidence shows the benefit of the algorithm.

Published in:

Machine Learning and Applications, 2007. ICMLA 2007. Sixth International Conference on

Date of Conference:

13-15 Dec. 2007