By Topic

Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hobbelen, D.G.E. ; Delft Univ. of Technol., Delft ; Wisse, Martijn

Limit cycle walkers are bipeds that exhibit a stable cyclic gait without requiring local controllability at all times during gait. A well-known example of limit cycle walking is McGeer's ldquopassive dynamic walking,rdquo but the concept expands to actuated bipeds as involved in this study. One of the stabilizing effects in limit cycle walkers is the dissipation of energy that occurs when the swing foot hits the ground. We hypothesize that this effect can be enhanced with a negative relation between the step length and step time. This relation is implemented through an open-loop strategy called swing-leg retraction; a predefined time trajectory for the swing leg makes the swing leg move backwards just prior to foot impact. In this paper, we study the effect of swing-leg retraction through three bipeds; a simple point mass simulation model, a realistic simulation model, and a physical prototype. Their stability is analyzed using Floquet multipliers, followed by an evaluation of how well disturbances are handled using the Gait Sensitivity Norm. We find that mild swing-leg retraction is optimal for the disturbance rejection of a limit cycle walker, as it results in a system response that is close to critically damped, rejecting the disturbance in the fewest steps. Slower retraction results in an overdamped response, characterized by a positive dominant Floquet multiplier. Likewise, faster retraction results in an underdamped response, characterized by a negative Floquet multiplier.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 2 )