By Topic

Characterization of Failures in an Operational IP Backbone Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Markopoulou, A. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Irvine, Irvine, CA ; Iannaccone, Gianluca ; Bhattacharyya, Supratik ; Chuah, Chen-Nee
more authors

As the Internet evolves into a ubiquitous communication infrastructure and supports increasingly important services, its dependability in the presence of various failures becomes critical. In this paper, we analyze IS-IS routing updates from the Sprint IP backbone network to characterize failures that affect IP connectivity. Failures are first classified based on patterns observed at the IP-layer; in some cases, it is possible to further infer their probable causes, such as maintenance activities, router-related and optical layer problems. Key temporal and spatial characteristics of each class are analyzed and, when appropriate, parameterized using well-known distributions. Our results indicate that 20% of all failures happen during a period of scheduled maintenance activities. Of the unplanned failures, almost 30% are shared by multiple links and are most likely due to router-related and optical equipment-related problems, respectively, while 70% affect a single link at a time. Our classification of failures reveals the nature and extent of failures in the Sprint IP backbone. Furthermore, our characterization of the different classes provides a probabilistic failure model, which can be used to generate realistic failure scenarios, as input to various network design and traffic engineering problems.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 4 )