By Topic

Parallel preconditioners for solutions of dense linear systems with tens of millions of unknowns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tahir Malas ; Department of Electrical and Electronics Engineering, Bilkent University, TR-06800, Ankara, Turkey ; Ozgur Ergul ; Levent Gurel

We propose novel parallel preconditioning schemes for the iterative solution of integral equation methods. In particular, we try to improve convergence rate of the ill-conditioned linear systems formulated by the electric-field integral equation, which is the only integral-equation formulation for targets having open surfaces. For moderate-size problems, iterative solution of the near-field system enables much faster convergence compared to the widely used sparse approximate inverse preconditioner. For larger systems, we propose an approximation strategy to the multilevel fast multipole algorithm (MLFMA) to be used as a preconditioner. Our numerical experiments reveal that this scheme significantly outperforms other preconditioners. With the combined effort of effective preconditioners and an efficiently parallelized MLFMA, we are able to solve targets with tens of millions of unknowns, which are the largest problems ever reported in computational electromagnetics.

Published in:

Computer and information sciences, 2007. iscis 2007. 22nd international symposium on

Date of Conference:

7-9 Nov. 2007