By Topic

A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaohua Fan ; Texas A&M Univ., Austin ; Heng Zhang ; Sanchez-Sinencio, E.

A typical common source cascode low-noise amplifier (CS-LNA) can be treated as a CS-CG two stage amplifier. In the published literature, an inductor is added at the drain of the main transistor to reduce the noise contribution of the cascode transistors. In this work, an inductor connected at the gate of the cascode transistor and capacitive cross-coupling are strategically combined to reduce the noise and the nonlinearity influences of the cascode transistors in a differential cascode CS-LNA. It uses a smaller noise reduction inductor compared with the conventional inductor based technique. It can reduce the noise, improve the linearity and also increase the voltage gain of the LNA. The proposed technique is theoretically formulated. Furthermore, as a proof of concept, a 2.2 GHz inductively degenerated CS-LNA was fabricated using TSMC 0.35 mum CMOS technology. The resulting LNA achieves 1.92 dB noise figure, 8.4 dB power gain, better than 13 dB S11, more than 30 dB isolation (S12), and -2.55 dBm IIP3, with the core fully differential LNA consuming 9 mA from a 1.8 V power supply.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:43 ,  Issue: 3 )