Cart (Loading....) | Create Account
Close category search window
 

Electrostatically Actuated Robotic Fish: Design and Control for High-Mobility Open-Loop Swimming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zu Guang Zhang ; Dept. of Precision Eng., Univ. of Tokyo, Tokyo ; Yamashita, N. ; Gondo, M. ; Yamamoto, A.
more authors

This paper presents a project that aims at fabricating a biologically inspired robotic fish. The robotic fish is designed to be capable of propelling itself through oscillations of a flexible caudal fin, like a real underwater fish. In this paper, we describe the design features that underlie the operation of the robotic fish. These features include a unique actuator referred to as electrostatic film motor and a light and flexible power transmission system. The electrostatic film motor is made of two pieces of flexible printed circuit film and can be utilized as a new-type artificial muscle. The power transmission system permits reciprocating power to be converted to periodic oscillations and distributed to the caudal fin. Based on several design considerations inspired by biological concepts, we propose several open-loop swimming control strategies for the constructed robotic fish to accomplish fish-like motion (i.e., cruising, turning, and diving). Experiments of Seidengyo I, the first prototype of our electrostatic fish family, are carried out to confirm the validity of the original design and control. We further design Seidengyo II to improve on Seidengyo I and show the results of the experiments.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 1 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.