Cart (Loading....) | Create Account
Close category search window
 

Bioinspired Robotic Dual-Camera System for High-Resolution Vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Tonet, O. ; CRIM Lab., Scuola Superiore Sant''Anna, Pontedera ; Focacci, F. ; Piccigallo, M. ; Mattei, L.
more authors

Due to the limited resolution of both cameras and displays, acuity of artificial vision systems is currently well below the human eye. Visual acuity, in cameras as well as in animal eyes, can be increased by making smaller receptors or bigger eyes. In some applications, the size of the camera is constrained, so alternative solutions must be sought. This paper presents a robotic dual-camera vision system whose design is inspired by the visual system of jumping spiders (Salticidae family). The system is composed of a telephoto camera whose field of view (FOV) can be moved within the larger FOV of a wide-angle camera and allows to form a high-resolution image, i.e., an image with the FOV of the wide-angle camera, yet having the same resolution as the telephoto camera. We describe the design of the robotic system, the direct and inverse kinematics, and the image processing algorithms that allow to build the high-resolution image. Images from experiments are presented, together with a discussion on sources of errors and possible solutions. The system is particularly useful for fixed-camera monitoring or teleoperation applications, such as remote surveillance and minimally invasive surgery. The system achieves seven times higher resolution than typical commercial endoscopes.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 1 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.