By Topic

A Gas-Actuated Anthropomorphic Prosthesis for Transhumeral Amputees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fite, K.B. ; Dept. of Mech. & Aeronaut. Eng., Clarkson Univ., Potsdam, NY ; Withrow, T.J. ; Xiangrong Shen ; Wait, K.W.
more authors

This paper presents the design of a gas-actuated anthropomorphic arm prosthesis with 21 degrees of freedom and nine independent actuators. The prosthesis utilizes the monopropellant hydrogen peroxide as a gas generator to power nine pneumatic type actuators. Of the nine independent actuators, one provides direct- drive actuation of the elbow, three provide direct-drive actuation for the wrist, and the remaining five actuate an underactuated 17 degree of freedom hand. This paper describes the design of the prosthesis, including the design of small-scale high-performance servovalves, which enable the implementation of the monopropellant concept in a transhumeral prosthesis. Experimental results are given characterizing both the servovalve performance and the force and/or motion control of various joints under closed-loop control.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 1 )