By Topic

Phosphor-Free GaN-Based Transverse Junction White-Light Light-Emitting Diodes With Regrown n-Type Regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Shi, J.-W. ; Nat. Central Univ., Taoyuan ; Chen, C.-C. ; Wang, C.-K. ; Lin, C.-S.
more authors

In this study, we demonstrate a GaN-based phosphor-free white-light light-emitting diode (LED), which is composed of GaN-based dual-wavelength (blue and yellow-green) multiple-quantum-wells (MQWs) and a transverse p-n junction. The device was realized by the regrowth of n-type GaN layers on the sidewall of p-type GaN and undoped MQWs. The problems related to the bias-dependent shape of the electroluminescence spectra that occur in traditional phosphor-free white-light LEDs (with vertical p-n junctions) are greatly minimized. The current-voltage performance of our device is comparable to that of the commercially available phosphor white-light LEDs. In addition, the dynamic measurement results indicate that we can attain a much higher modulation bandwidth (22 versus 3 MHz) with this device than with the currently available commercial ones.

Published in:

Photonics Technology Letters, IEEE  (Volume:20 ,  Issue: 6 )