Cart (Loading....) | Create Account
Close category search window
 

Disturbance Observer-Based Robust Control of Free-Floating Space Manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chu Zhongyi ; Tsinghua Univ., Beijing ; Sun Fuchun ; Cui Jing

A disturbance observer-based control scheme is proposed for free-floating space manipulator with nonlinear dynamics derived using the virtual manipulator approach. The derived dynamic equation uses only link angles as generalized coordinates, which is suitable for the controller design in joint space. Since joint coupling, model uncertainties in robot dynamics are treated as lumped disturbances, a disturbance observer is developed at each joint of degree-of-freedom space manipulator to decouple and simplify the controller design. Simulation results of a six-link space manipulator show that the proposed scheme achieves superior performance, especially when large external disturbances are present.

Published in:

Systems Journal, IEEE  (Volume:2 ,  Issue: 1 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.