Cart (Loading....) | Create Account
Close category search window
 

Robustness of Adaptive Narrowband Beamforming With Respect to Bandwidth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oudin, M. ; GET/ Inst. Nat. des Telecommun. (INT), Evry ; Delmas, J.P.

This paper addresses the robustness of adaptive narrowband beamforming with respect to bandwidth based on the loss of performance in terms of signal-to-interference-plus-noise ratio (SINR). The criterion used by Zatman to define a narrowband environment, i.e., the ratio between the jammer plus noise covariance matrix and the noise eigenvalue, is studied from the point of view of a loss of SINR after narrowband beamforming under non narrowband conditions. Using theoretical results about the eigenvalues and eigenvectors of covariance matrices for signals closely spaced in frequency by Lee, it is shown that Zatman's criterion can be interpreted as an upper bound on the SINR loss which is nearly reached under certain conditions that are specified.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 4 )

Date of Publication:

April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.