By Topic

Decentralized Detection With Censoring Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Swaroop Appadwedula ; Massachusetts Inst. of Technol. Lincoln Lab., Lexington ; Venugopal V. Veeravalli ; Douglas L. Jones

In the censoring approach to decentralized detection, sensors transmit real-valued functions of their observations when "informative" and save energy by not transmitting otherwise. We address several practical issues in the design of censoring sensor networks including the joint dependence of sensor decision rules, randomization of decision strategies, and partially known distributions. In canonical decentralized detection problems involving quantization of sensor observations, joint optimization of the sensor quantizers is necessary. We show that under a send/no-send constraint on each sensor and when the fusion center has its own observations, the sensor decision rules can be determined independently. In terms of design, and particularly for adaptive systems, the independence of sensor decision rules implies that minimal communication is required. We address the uncertainty in the distribution of the observations typically encountered in practice by determining the optimal sensor decision rules and fusion rule for three formulations: a robust formulation, generalized likelihood ratio tests, and a locally optimum formulation. Examples are provided to illustrate the independence of sensor decision rules, and to evaluate the partially known formulations.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 4 )