By Topic

Video-Based Human Movement Analysis and Its Application to Surveillance Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper presents a novel posture classification system that analyzes human movements directly from video sequences. In the system, each sequence of movements is converted into a posture sequence. To better characterize a posture in a sequence, we triangulate it into triangular meshes, from which we extract two features: the skeleton feature and the centroid context feature. The first feature is used as a coarse representation of the subject, while the second is used to derive a finer description. We adopt a depth-first search (dfs) scheme to extract the skeletal features of a posture from the triangulation result. The proposed skeleton feature extraction scheme is more robust and efficient than conventional silhouette-based approaches. The skeletal features extracted in the first stage are used to extract the centroid context feature, which is a finer representation that can characterize the shape of a whole body or body parts. The two descriptors working together make human movement analysis a very efficient and accurate process because they generate a set of key postures from a movement sequence. The ordered key posture sequence is represented by a symbol string. Matching two arbitrary action sequences then becomes a symbol string matching problem. Our experiment results demonstrate that the proposed method is a robust, accurate, and powerful tool for human movement analysis.

Published in:

Multimedia, IEEE Transactions on  (Volume:10 ,  Issue: 3 )