By Topic

Loss-Tolerant Quantum Coin Flipping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Berlin, G. ; Univ. de Montreal, Montreal ; Brassard, G. ; Bussieres, F. ; Godbout, N.

Coin flipping is a cryptographic primitive in which two spatially separated players, who in principle do not trust each other, wish to establish a common random bit. If we limit ourselves to classical communication, this task requires either assumptions on the computational power of the participants or it requires them to send messages to each other with sufficient simultaneity to force their complete independence. Without such assumptions, all classical protocols are so that one dishonest player can completely bias the outcome to his choosing. If we allow for quantum communication, on the other hand, protocols have been introduced that limit the maximal bias that dishonest players can produce. However, those protocols would be very difficult to implement in practice because they cannot tolerate realistic losses on the quantum channel between the participants or in their quantum storage and measurement apparatus. In this paper, we introduce a novel quantum protocol and we prove its unconditional security even when such losses are taken into account.

Published in:

Quantum, Nano and Micro Technologies, 2008 Second International Conference on

Date of Conference:

10-15 Feb. 2008