By Topic

Stacked Microstrip-Patch Arrays as Alternative Feeds for Spaceborne Reflector Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kona, K.S. ; Univ. of California at Los Angeles, Los Angeles ; Bahadori, K. ; Rahmat-Samii, Y.

The feasibility of using stacked microstrip-patch arrays as feeds for offset reflector antennas is investigated in this paper. It is shown that patch arrays can be used as alternatives to the conventionally used horn feeds, which tend to be bulky. In particular, patch arrays can be of interest for spacecraft applications where reduced size and light-weight feeds are highly desirable. In this paper, patch arrays were tailored to provide radiation characteristics similar to those of horn feeds by varying the element spacing and excitation. A reduction in weight was mainly realized by the planar construction of the patch arrays. A full-wave analysis of the feed array, using finite-difference time-domain (FDTD) and PO-based UCLA reflector-analysis codes, was used to test the results of the proposed feed, operating at 1.413 GHz for radiometer applications, and 1.26 GHz for radar applications. A dual-polarized and dual-frequency stacked microstrip-patch element was fabricated and tested. It was then demonstrated that a seven-element hexagonal array design seemed to be the best match to the horn feeds for a 12 m offset-reflector antenna.

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:49 ,  Issue: 6 )