Cart (Loading....) | Create Account
Close category search window

Factors Influencing the Leakage Current in Embedded SiGe Source/Drain Junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Simoen, E. ; Interuniversity Microelectron. Centre, Leuven ; Gonzalez, M.B. ; Vissouvanadin, B. ; Chowdhury, M.K.
more authors

This paper studies the leakage current components in embedded Si1-x,Gex, source/drain (S/D) p+-n junctions, with different Ge contents, varying between 20% and 35%. In addition, the impact of performing a highly doped drain (HDD) implantation before or after the selective epitaxial deposition of in situ highly B-doped S/D layers is investigated. It is shown that the lowest junction leakage is obtained for the post-epi HDD condition, and moreover, for the smallest active area size. As pointed out, this dependence is related with a window-size-dependent strain relaxation, induced by the ion-implantation-related defects.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.