By Topic

A New Linear Programming Approach to Decoding Linear Block Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kai Yang ; Dept. of Electr. Eng., Columbia Univ., New York, NY ; Xiaodong Wang ; Jon Feldman

In this paper, we propose a new linear programming formulation for the decoding of general linear block codes. Different from the original formulation given by Feldman, the number of total variables to characterize a parity-check constraint in our formulation is less than twice the degree of the corresponding check node. The equivalence between our new formulation and the original formulation is proven. The new formulation facilitates to characterize the structure of linear block codes, and leads to new decoding algorithms. In particular, we show that any fundamental polytope is simply the intersection of a group of the so-called minimum polytopes, and this simplified formulation allows us to formulate the problem of calculating the minimum Hamming distance of any linear block code as a simple linear integer programming problem with much less auxiliary variables. We then propose a branch-and-bound method to compute a lower bound to the minimum distance of any linear code by solving a corresponding linear integer programming problem. In addition, we prove that, for the family of single parity-check (SPC) product codes, the fractional distance and the pseudodistance are both equal to the minimum distance. Finally, we propose an efficient algorithm for decoding SPC product codes with low complexity and maximum-likelihood (ML) decoding performance.

Published in:

IEEE Transactions on Information Theory  (Volume:54 ,  Issue: 3 )