By Topic

Power-Efficient Resource Allocation for Time-Division Multiple Access Over Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xin Wang ; Dept. of Electr. Eng., Florida Atlantic Univ., Boca Raton, FL ; Georgios B. Giannakis

We investigate resource allocation policies for time-division multiple access (TDMA) over fading channels in the power-limited regime. For frequency-flat block-fading channels and transmitters having full channel state information (CSI), we first minimize power under a weighted sum average rate constraint and show that the optimal rate and time allocation policies can be obtained by a greedy water-filling approach with linear complexity in the number of users. Subsequently, we pursue power minimization under individual average rate constraints and establish that the optimal resource allocation also amounts to a greedy water-filling solution. Our approaches not only provide fundamental power limits when each user can support an infinite-size capacity-achieving codebook (continuous rates), but also yield guidelines for practical designs where users can only support a finite set of adaptive modulation and coding modes (discrete rates).

Published in:

IEEE Transactions on Information Theory  (Volume:54 ,  Issue: 3 )