By Topic

Estimating Maximum Radiated Emissions From Printed Circuit Boards With an Attached Cable

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaowei Deng ; Juniper Network, Sunnyvale ; Hubing, T. ; Beetner, D.

The common-mode current induced on cables attached to printed circuit boards can be a significant source of radiated emissions. Previous studies have shown that coupling from electric and magnetic field sources on circuit boards can be effectively modeled by placing equivalent voltage sources between the board and the cable. The amplitude of these equivalent sources can be estimated by using closed-form equations; however, estimates of the radiated emissions from these board-cable geometries have required full-wave simulations, and full-wave simulation results depend on the exact cable length and placement, which are not normally fixed during radiated emissions testing. This paper develops a closed-form equation to estimate the maximum radiated fields from a voltage source driving a board relative to an attached cable over a ground plane. This equation is evaluated for various cable and board geometries by comparing the calculated results to full-wave simulations. The maximum radiation calculated by using the closed-form expression generally predicts the peak full-wave simulation results within a few decibels for various board sizes and cable lengths.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:50 ,  Issue: 1 )