By Topic

A Hybrid Control Algorithm for Voltage Regulation in DC–DC Boost Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sreekumar, C. ; Gov. Coll. of Eng., Kannur ; Agarwal, V.

A new switching control algorithm based on state trajectory approximation is proposed to regulate the output voltage of a representative second-order DC-DC converter - the boost converter. The essence of the proposed algorithm is to trap the system into a stable limit cycle while ensuring the required voltage regulation. Unlike some of the earlier algorithms, the concept is applicable to both continuous and discontinuous current modes of operation, making it viable over a wide operating range under various load and line disturbances. A hybrid-automaton representation of the converter is used to perform the analysis, and the control problem is simplified to a guard-selection problem. Guard conditions, governing the transition of the converter operation from one discrete state to the other in a hybrid-automaton representation, are derived. The hybrid-automaton-based control system is implemented by using the state flow chart feature of MATLAB, and extensive simulations are carried out to check the suitability of the algorithm. The hybrid control law is also validated in real time by using a laboratory prototype. The experimental and simulation results prove the effectiveness of the proposed control law under varying line and load conditions.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 6 )