Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A Temperature-Stable Film Bulk Acoustic Wave Oscillator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wei Pang ; Avago Technol., Inc., San Jose ; Ruby, R.C. ; Parker, R. ; Fisher, P.W.
more authors

This letter reports a passively temperature-compensated CMOS oscillator utilizing a film bulk acoustic resonator. The resonator exhibiting an f ldr Q product of 2-4 X 1012 s-1 is composed of molybdenum, aluminum nitride, and a compensation material that has a positive temperature coefficient of Young's modulus. The 604-MHz oscillator consumes 5.3 mW from a 3.3-V supply and achieves excellent phase noise performances of -102, -130, and -149 dBc/Hz at 1, 10, and 100 kHz carrier offsets, respectively. The oscillator's temperature-dependent frequency drift is less than 80 ppm over a temperature range of -35degC to +85degC.

Published in:

Electron Device Letters, IEEE  (Volume:29 ,  Issue: 4 )