By Topic

Capacity Management and Equilibrium for Proportional QoS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Menache, I. ; Fac. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa ; Shimkin, N.

Differentiated services architectures are scalable solutions for providing class-based quality of service (QoS) over packet switched networks. While qualitative attributes of the offered service classes are often well defined, the actual differentiation between classes is left as an open issue. We address here the proportional QoS model, which aims at maintaining pre-defined ratios between the service class delays (or related congestion measures). In particular, we consider capacity assignment among service classes as the means for attaining this design objective. Starting with a detailed analysis for the single hop model, we first obtain the required capacity assignment for fixed flow rates. We then analyze the scheme under a reactive scenario, in which self-optimizing users may choose their service class in response to capacity modifications. We demonstrate the existence and uniqueness of the equilibrium in which the required ratios are maintained, and address the efficient computation of the optimal capacities. We further provide dynamic schemes for capacity adjustment, and consider the incorporation of pricing and congestion control to enforce absolute performance bounds on top of the proportional ones. Finally, we extend our basic results to networks with general topology.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 5 )