By Topic

Optimizing Lifetime for Continuous Data Aggregation With Precision Guarantees in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xueyan Tang ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Jianliang Xu

This paper exploits the tradeoff between data quality and energy consumption to extend the lifetime of wireless sensor networks. To obtain an aggregate form of sensor data with precision guarantees, the precision constraint is partitioned and allocated to individual sensor nodes in a coordinated fashion. Our key idea is to differentiate the precisions of data collected from different sensor nodes to balance their energy consumption. Three factors affecting the lifetime of sensor nodes are identified: 1) the changing pattern of sensor readings; 2) the residual energy of sensor nodes; and 3) the communication cost between the sensor nodes and the base station. We analyze the optimal precision allocation in terms of network lifetime and propose an adaptive scheme that dynamically adjusts the precision constraints at the sensor nodes. The adaptive scheme also takes into consideration the topological relations among sensor nodes and the effect of in-network aggregation. Experimental results using real data traces show that the proposed scheme significantly improves network lifetime compared to existing methods.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 4 )