By Topic

Fault diagnostic method of power transformers based on hybrid genetic algorithm evolving wavelet neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pan, C. ; Chongqing Univ., Chongqing ; Chen, W. ; Yun, Y.

The main drawbacks of a back propagation algorithm of wavelet neural network (WNN) commonly used in fault diagnosis of power transformers are that the optimal procedure is easily stacked into the local minima and cases that strictly demand initial value. A fault diagnostic method is presented based on a real-encoded hybrid genetic algorithm evolving a WNN, which can be used to optimise the structure and the parameters of WNN instead of humans in the same training process. Through the process, compromise is satisfactorily made among network complexity, convergence and generalisation ability. A number of examples show that the method proposed has good classifying capability for single- and multiple-fault samples of power transformers as well as high fault diagnostic accuracy.

Published in:

Electric Power Applications, IET  (Volume:2 ,  Issue: 1 )