By Topic

Population-Based Incremental Learning With Associative Memory for Dynamic Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shengxiang Yang ; Dept. of Comput. Sci., Univ. of Leicester, Leicester ; Xin Yao

In recent years, interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) has grown due to its importance in real-world applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic problems. This paper investigates the application of the memory scheme for population-based incremental learning (PBIL) algorithms, a class of EAs, for DOPs. A PBIL-specific associative memory scheme, which stores best solutions as well as corresponding environmental information in the memory, is investigated to improve its adaptability in dynamic environments. In this paper, the interactions between the memory scheme and random immigrants, multipopulation, and restart schemes for PBILs in dynamic environments are investigated. In order to better test the performance of memory schemes for PBILs and other EAs in dynamic environments, this paper also proposes a dynamic environment generator that can systematically generate dynamic environments of different difficulty with respect to memory schemes. Using this generator, a series of dynamic environments are generated and experiments are carried out to compare the performance of investigated algorithms. The experimental results show that the proposed memory scheme is efficient for PBILs in dynamic environments and also indicate that different interactions exist between the memory scheme and random immigrants, multipopulation schemes for PBILs in different dynamic environments.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:12 ,  Issue: 5 )