By Topic

A Space Vector PWM Scheme for Multifrequency Output Voltage Generation With Multiphase Voltage-Source Inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dujic, D. ; Sch. of Eng., Liverpool John Moores Univ., Liverpool ; Grandi, G. ; Jones, M. ; Levi, E.

Multiphase variable-speed drives, supplied from two-level voltage-source inverters (VSIs), are nowadays considered for various industrial applications. Depending on the drive structure and/or the motor design, the VSI is required to generate either sinusoidal voltages or voltages that contain a certain number of sinusoidal components (ldquomultifrequency output voltagesrdquo). The existing space vector pulsewidth-modulation (SVPWM) schemes are based on selection of (n-1) active space vectors (for odd phase numbers) within a switching period and they yield either sinusoidal voltage or sinusoidal fundamental voltage in combination with a limited amount of other harmonic terms. This paper develops a SVPWM scheme, which enables multifrequency output voltage generation with arbitrary values of various sinusoidal components in the output voltage. The method is based on initial selection of (n-1)2/2 active space vectors within a switching period, instead of the common (n-1) active vectors. By properly arranging the sequence of the vector application, it is possible to provide an automatic postreduction of the number of applied active vectors to (n-1), thus maintaining the same switching frequency as with the existing schemes while simultaneously avoiding the limiting on the generated sinusoidal output voltage components. Theoretical considerations are detailed using a five-phase VSI. The experimental verification is provided using a five-phase two-motor series-connected induction motor drive, supplied from a custom-designed five-phase DSP-controlled VSI.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 5 )