By Topic

Mammographic Images Enhancement and Denoising for Breast Cancer Detection Using Dyadic Wavelet Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mencattini, A. ; Dept. of Electron. Eng., Univ. of Rome "Tor Vergata", Rome ; Salmeri, M. ; Lojacono, R. ; Frigerio, M.
more authors

Mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are low-contrast and noisy images. In this paper, a novel algorithm for image denoising and enhancement based on dyadic wavelet processing is proposed. The denoising phase is based on a local iterative noise variance estimation. Moreover, in the case of microcalcifications, we propose an adaptive tuning of enhancement degree at different wavelet scales, whereas in the case of mass detection, we developed a new segmentation method combining dyadic wavelet information with mathematical morphology. The innovative approach consists of using the same algorithmic core for processing images to detect both microcalcifications and masses. The proposed algorithm has been tested on a large number of clinical images, comparing the results with those obtained by several other algorithms proposed in the literature through both analytical indexes and the opinions of radiologists. Through preliminary tests, the method seems to meaningfully improve the diagnosis in the early breast cancer detection with respect to other approaches.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:57 ,  Issue: 7 )