By Topic

Leakage Minimization of Digital Circuits Using Gate Sizing in the Presence of Process Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhardwaj, S. ; Synopsys, Inc., Mountain View ; Vrudhula, S.

This paper presents a novel gate-sizing methodology to minimize the leakage power in the presence of process variations. The method is based on modeling the statistics of leakage and delay as posynomials functions to formulate a geometric-programming problem. The existing statistical leakage model is extended to include the variations in gate sizes, as well as systematic variations. Using a simplified delay model, we propose an efficient method to evaluate the alpha-percentile of path delays without enumerating the paths in a circuit. The complexity of evaluating the objective function of the optimization problem is O(|N|2) and that of evaluating the delay constraints is O(|N| + |E|) for a circuit with |N| gates and |E| wires. The optimization problem is then solved using a convex optimization algorithm that gives an exact solution. The statistical optimization methodology is shown to provide as much as 15% reduction in the mean leakage power as compared to traditional worst case gate sizing with the same delay constraints.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 3 )