Cart (Loading....) | Create Account
Close category search window
 

A Current Control Scheme With an Adaptive Internal Model for Torque Ripple Minimization and Robust Current Regulation in PMSM Drive Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohamed, Y.A.-R.I. ; Waterloo Univ., Waterloo ; El-Saadany, E.F.

This paper addresses the problem of uncertainties in practical permanent magnet synchronous motors (PMSMs), and proposes a simple adaptive internal model within the current feedback and reference current generation structure as a solution. Due to the time varying nature and the high-bandwidth property of uncertainties in a practical PMSM drive system, the internal model is simply chosen as the estimated uncertainty function. To provide a high bandwidth estimate of the uncertainty function with high-noise immunity, a simple adaptation law is derived, in the sense of Lyapunov functions, using the nominal current dynamics. The inclusion of the frequency modes of the disturbances to be eliminated (the flux harmonics and voltage disturbances caused by parameter variation) in the stable closed-loop system introduces very high-attenuation at different frequency modes corresponding to uncertainty modes. Therefore, a robust torque ripple minimization and current regulation performances are yielded. To properly tune the proposed scheme, a stability analysis based on a discrete-time Lyapunov function has been used to determine the stability limits of the adaptation gain. Comparative evaluation results are presented to demonstrate the effectiveness of the proposed control scheme under different operating conditions.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:23 ,  Issue: 1 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.