By Topic

Optimal Wind–Thermal Generating Unit Commitment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chun-Lung Chen ; Ming Hsin Univ. of Sci. & Technol., Hsin-Chu

As wind power penetrations increase in isolated power systems, more innovative and sophisticated approaches to system operation will need to be adopted due to the intermittency and unpredictability of wind power generation. In this paper, a hybrid approach of combining branch and bound algorithm with a dynamic programming algorithm is developed to coordinate the wind and thermal generation scheduling problem for operating an isolated hybrid power system reliably and efficiently. Several technique constraints are applied to determine the maximum proportion of wind generator capacity that can be integrated into the system. A simplified dispatch based on the direct search method (DSM) is also introduced to relieve the computational burden further. Numerical experiments are included to understand the wind generator capacity in production cost analysis and to provide valuable information for both operational and planning problems.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:23 ,  Issue: 1 )