By Topic

Modeling and Technique to Improve PSRR and PS-IMD in Analog PWM Class-D Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tong Ge ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Chang, Joseph S.

Although power-supply noise, qualified by power- supply rejection ratio (PSRR), has been recognized as a potential drawback of Class-D amplifiers (CDAs) compared to linear amplifiers, the mechanisms of PSRR for CDAs are not well established. It is also not well recognized that the power-supply noise can intermodulate with the input signal, manifesting into power-supply induced intermodulation distortion (PS-IMD), and that the PS-IMD can be significantly larger than the output distortion component at supply noise frequency. Furthermore, techniques to improve PSRR and PS-IMD are largely unreported in literature. In this brief, by means of a linear model, the PSRR and PS-IMD of single-feedback and double-feedback CDAs are analyzed and analytical expressions derived. A simple method is proposed to improve PSRR and PS-IMD with very low hardware overheads, and the improvement is ~ 26 dB. Analytical expressions for PSRR and PS-IMD of the improved design are derived and the pertinent parameters thereof are investigated. The model and analyses provide practical insight to the mechanisms of PSRR and PS-IMD, and how various parameters may be varied to meet a given specification.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:55 ,  Issue: 6 )