By Topic

Weighted Adaptive Lifting-Based Wavelet Transform for Image Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Liu ; Chinese Univ. of Hong Kong, Hong Kong ; King Ngi Ngan

In this paper, a new weighted adaptive lifting (WAL)-based wavelet transform is presented. The proposed WAL approach is designed to solve the problems existing in the previous adaptive directional lifting (ADL) approach, such as mismatch between the predict and update steps, interpolation favoring only horizontal or vertical direction, and invariant interpolation filter coefficients for all images. The main contribution of the proposed approach consists of two parts: one is the improved weighted lifting, which maintains the consistency between the predict and update steps as far as possible and preserves the perfect reconstruction at the same time; another is the directional adaptive interpolation, which improves the orientation property of the interpolated image and adapts to statistical property of each image. Experimental results show that the proposed WAL-based wavelet transform for image coding outperforms the conventional lifting-based wavelet transform up to 3.06 dB in PSNR and significant improvement in subjective quality is also observed. Compared with the ADL-based wavelet transform, up to 1.22-dB improvement in PSNR is reported.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 4 )