Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A Real-Time and Reliable Transport (RT) ^{2} Protocol for Wireless Sensor and Actor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gungor, V.C. ; Eaton Corp., Milwaukee ; Akan, O.B. ; Akyildiz, I.F.

Wireless sensor and actor networks (WSANs) are characterized by the collective effort of heterogeneous nodes called sensors and actors. Sensor nodes collect information about the physical world, while actor nodes take action decisions and perform appropriate actions upon the environment. The collaborative operation of sensors and actors brings significant advantages over traditional sensing, including improved accuracy, larger coverage area and timely actions upon the sensed phenomena. However, to realize these potential gains, there is a need for an efficient transport layer protocol that can address the unique communication challenges introduced by the coexistence of sensors and actors. In this paper, a real-time and reliable transport (RT) protocol is presented for WSANs. The objective of the (RT) protocol is to reliably and collaboratively transport event features from the sensor field to the actor nodes with minimum energy dissipation and to timely react to sensor information with a right action. In this respect, the (RT) protocol simultaneously addresses congestion control and timely event transport reliability objectives in WSANs. To the best of our knowledge, this is the first research effort focusing on real-time and reliable transport protocol for WSANs. Performance evaluations via simulation experiments show that the (RT) protocol achieves high performance in terms of reliable event detection, communication latency and energy consumption in WSANs.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 2 )