Cart (Loading....) | Create Account
Close category search window
 

KTR: An Efficient Key Management Scheme for Secure Data Access Control in Wireless Broadcast Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qijun Gu ; Dept. of Comput. Sci., Texas State Univ., San Marcos, TX, USA ; Peng Liu ; Wang-Chien Lee ; Chao-Hsien Chu

Wireless broadcast is an effective approach for disseminating data to a number of users. To provide secure access to data in wireless broadcast services, symmetric-key-based encryption is used to ensure that only users who own the valid keys can decrypt the data. With regard to various subscriptions, an efficient key management for distributing and changing keys is in great demand for access control in broadcast services. In this paper, we propose an efficient key management scheme, namely, key tree reuse (KTR), to handle key distribution with regard to complex subscription options and user activities. KTR has the following advantages. First, it supports all subscription activities in wireless broadcast services. Second, in KTR, a user only needs to hold one set of keys for all subscribed programs instead of separate sets of keys for each program. Third, KTR identifies the minimum set of keys that must be changed to ensure broadcast security and minimize the rekey cost. Our simulations show that KTR can save about 45 percent of communication overhead in the broadcast channel and about 50 percent of decryption cost for each user compared with logical-key-hierarchy-based approaches.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:6 ,  Issue: 3 )

Date of Publication:

July-Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.