By Topic

Development of EHD ion-drag micropump for microscale electronics cooling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. K. Lee ; Dept. of Mechanical and Manufacturing Engineering, Trinity College Dublin, 2, Ireland ; A. J. Robinson ; C. Y. Ching

In this investigation, the numerical simulation of electrohydrodynamic (EHD) ion-drag micropumps with micropillar electrode geometries have been performed. The effect of micropillar height and electrode spacing on the performance of the micropumps was investigated. The performance of the EHD micropump improved with increased applied voltage and decreased electrode spacing. The optimum micropillar height for the micropump with electrode spacing of 40 mum and channel height of 100 mum at 200 V was 40 mum, where a maximum mass flow rate of 0.18g/min was predicted. Compared to that of planar electrodes, the 3D micropillar electrode geometry enhanced the overall performance of the EHD micropumps.

Published in:

Thermal Investigation of ICs and Systems, 2007. THERMINIC 2007. 13th International Workshop on

Date of Conference:

17-19 Sept. 2007