By Topic

A New Method of Transient Stability Assessment in Power Systems Using LS-SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Izzri, A.W.N. ; Univ. Putra Malaysia, Serdang ; Mohamed, A. ; Yahya, I.

This paper presents transient stability assessment of electrical power system using least squares support vector machine (LS-SVM) and principle component analysis. Transient stability of a power system is first determined based on the generator relative rotor angles obtained from time domain simulation outputs. Simulations were carried out on the IEEE 9- bus test system considering three phase faults on the system. The data collected from the time domain simulations are then used as inputs to the LS-SVM in which LS-SVM is used as a classifier to determine the stability state of a power system. Principle component analysis is applied to extract useful input features to the LS-SVM so that training time of the LS-SVM can be reduced. To verify the effectiveness of the proposed LS-SVM method, its performance is compared with the multi layer perceptron neural network. Results show that the LS-SVM gives faster and more accurate transient stability assessment compared to the multi layer perceptron neural network in terms of classification results.

Published in:

Research and Development, 2007. SCOReD 2007. 5th Student Conference on

Date of Conference:

12-11 Dec. 2007