By Topic

Analysis of Partial Discharge Measurement Data Using a Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ab Aziz, N.F. ; Univ. Tenaga Nasional, Kajang ; Hao, L. ; Lewin, P.L.

This paper investigates the recognition of partial discharge sources by using a statistical learning theory, support vector machine (SVM). SVM provides a new approach to pattern classification and has been proven to be successful in fields such as image identification and face recognition. To apply SVM learning in partial discharge classification, data input is very important. The input should be able to fully represent different patterns in an effective way. The determination of features that describe the characteristics of partial discharge signals and the extraction of reliable information from the raw data are the key to acquiring valuable patterns of partial discharge signals. In this paper, data obtained from experiment is carried out in both time and frequency domain. By using appropriate combination of kernel functions and parameters, it is concluded that the frequency domain approach gives a better classification rate.

Published in:

Research and Development, 2007. SCOReD 2007. 5th Student Conference on

Date of Conference:

12-11 Dec. 2007