By Topic

Feature Extraction Technique using Discrete Wavelet Transform for Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kamarul Hawari Ghazali ; Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia. E-mail: ; Mohd Fais Mansor ; Mohd. Marzuki Mustafa ; Aini Hussain

The purpose of feature extraction technique in image processing is to represent the image in its compact and unique form of single values or matrix vector. Low level feature extraction involves automatic extraction of features from an image without doing any processing method. In this paper, we consider the use of high level feature extraction technique to investigate the characteristic of narrow and broad weed by implementing the 2 dimensional discrete wavelet transform (2D-DWT) as the processing method. Most transformation techniques produce coefficient values with the same size as the original image. Further processing of the coefficient values must be applied to extract the image feature vectors. In this paper, we propose an algorithm to implement feature extraction technique using the 2D-DWT and the extracted coefficients are used to represent the image for classification of narrow and broad weed. Results obtained suggest that the extracted 2D-DWT coefficients can uniquely represents the two different weed type.

Published in:

Research and Development, 2007. SCOReD 2007. 5th Student Conference on

Date of Conference:

12-11 Dec. 2007