By Topic

Performance Analysis of GPS Receivers in Non-Gaussian Noise Incorporating Precorrelation Filter and Sampling Rate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liyu Liu ; Villanova Univ., Villanova ; Amin, M.G.

Global positioning system (GPS) receivers find growing applications in indoor and outdoor communication environments, including urban and rural areas. Interference and noise sources for GPS receivers may assume Gaussian or non-Gaussian distributions. The GPS receiver performance under Gaussian additive noise has been studied. Non-Gaussian noise may equally contaminate the GPS satellite signals and disturb the receiver delay lock loops (DLL), producing significant tracking errors. These sources include impulsive noise, ultra-wideband (UWB) signals, and impulse and noise radar signals for target tracking and indoor imaging applications. This paper considers non-Gaussian noise of finite variance and examines its effect on the discriminator outputs for the commercial GPS receiver that uses the coarse acquisition (C/A) code. The correlator noise output components are produced from the correlation between the noise sequence and the early, late, and punctual reference C/A code. Due to the long time averaging, which is characteristic of the GPS correlation loops, these components assume Gaussian distributions. The discriminator tracking error variance is derived, incorporating the effect of noise, the front-end precorrelation filter, and the sampling rate.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 3 )