By Topic

Adaptive Polarized Waveform Design for Target Tracking Based on Sequential Bayesian Inference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Martin Hurtado ; Washington Univ., St. Louis ; Tong Zhao ; Arye Nehorai

In this paper, we develop an adaptive waveform design method for target tracking under a framework of sequential Bayesian inference. We employ polarization diversity to improve the tracking accuracy of a target in the presence of clutter. We use an array of electromagnetic (EM) vector sensors to fully exploit the polarization information of the reflected signal. We apply a sequential Monte Carlo method to track the target parameters, including target position, velocity, and scattering coefficients. This method has the advantage of being able to handle nonlinear and non-Gaussian state and measurement models. The measurements are the output of the sensor array; hence, the information about both the target and its environment is incorporated in the tracking process. We design a new criterion for selecting the optimal waveform one-step ahead based on a recursion of the posterior Cramer-Rao bound. We also derive an algorithm using Monte Carlo integration to compute this criterion and a suboptimal method that reduces the computation cost. Numerical examples demonstrate both the performance of the proposed tracking method and the advantage of the adaptive waveform design scheme.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 3 )